
Intro to EPI 590R
Why this class?

1

About this class
Goal: Learn some best practices to make your life in R
easier and your research more reproducible

Quick! Intense!

It will require practice afterward, and time to sink in

The goal is to set you up for success and give you
resources to learn more

You don’t have to use everything you learn here!

Some of these tools I use for every project, some just
occasionally

Experiment with what works for you, a little at a time

2

Artwork by @allison_horst 3

https://twitter.com/allison_horst

About this class
Everything you need is at

Canvas will link you there, but good to bookmark as
well

The website will be up indefinitely

General format:

Some overview slides

I’ll demonstrate while you watch

Practice on your own/with your classmates

http://epi590r-
2023.louisahsmith.com

4

http://epi590r-2023.louisahsmith.com/

About Louisa
Assistant professor at Northeastern
University

Department of Health Sciences
and the Roux Institute
(Portland, Maine)

Started using R during my master’s
(so almost 9 years of experience)

I learned mostly by doing!

Twitter, blogs, RStudio::conf
videos, meetups

Basically everything I do is in R!

Actual epi research in causal
inference, pregnancy, lots of other
stuff

5

Most important thing about me

6

Why this class?
Economics Genes Orangutans

7

Errors are everywhere

No one and no field is immune from errors in data
analysis. Our goal is to make them as unlikely as possible
(and report them when we find them!)

8

But also!
It’s really boring to copy lots of numbers into a table

And then change a tiny thing in the analysis and do it
all over again

It’s really frustrating to lose work when your computer
crashes, or completely change an analysis before your
advisor forgets what they told you last time and has you
change it back

It’s fun when things just work! And you get more time
for the fun parts of epidemiology

9

Artwork by @allison_horst 10

https://twitter.com/allison_horst

Artwork by @allison_horst 11

https://twitter.com/allison_horst

Questions?

13

Exercises: Connecting to GitHub
�. Install the {usethis} package:

install.packages("usethis")

�. Introduce yourself to git:

usethis::use_git_config(user.name = "Louisa Smith",
user.email = "louisahsmith@gmail.com")

When you make changes to your code, they will be
associated with this name and email address (this doesn’t
really matter for our purposes)

You only need to do this once

14

Installing packages
If you just updated R to a new “major” version, you will
need to reinstall packages

I tend to do this as I need them rather than try to
reinstall them all at once

RStudio tries to help!

15

Possible errors
Spelling the package or function’s name wrong, or not
installing or loading the package

16

Using packages
If you are writing a script
you will save, and will use
several functions from this
package

If you are just running some
quick code in the console or
only need to use the
package a few times in a
script

I try to only run library(package) from a script (not the
console) so that there’s a “record” of me loading the
package, or else I might accidentally write code that
doesn’t work later

library(usethis)1

use_git_config(user.name = "Lo2 usethis::use_git_config(user.n1

17

Since I don’t need to run this once, I would probably run
this from the console (bottom) rather than a script (top)

Running from the console is great for install.packages(),
quick calculations, fiddling with code until you get it right,
or scenarios like this – otherwise save your code in a script!

18

Connect to GitHub
�. Create a github token:

usethis::create_github_token()

Instead of entering your password every time, this is a
secure way to connect to GitHub

If you are ever asked for your GitHub password in
RStudio, you have to give this instead

19

Connect to GitHub
�. Copy the token

�. Back in R, run this code and paste your token where it
says “Enter password”:

gitcreds::gitcreds_set()

You can do this again whenever your token expires or you
are using a different device

20

Exercises
Refer back to the slides as needed

Ask a classmate if you’re stuck

Raise your hand for the teaching team

Done early? Help a friend! Read the resources section!
Play around in R! Check your email!

15:00
21

Git and GitHub
A brief introduction

1

Git

version control system

works offline (repositories
exist on your computer)

tracks changes via
commits

has a command-line
interface and integrations
with GUIs (like RStudio)

GitHub

web-based platform built
around Git

provides a remote location
for hosting Git repositories

enables collaboration

offers other features for
project management (pull
requests, issue tracking)

2

Our Git/GitHub goals
For you: Keep track of progress on projects

Go back when you need to

Don’t lose old work

Easily search the history of a project

For others: Share your work

Have a place to store and link to code

Read and interact with others’ code

There is a lot to learn about this topic and I am not an
expert on everything!

3

What we won’t cover
Collaboration

When multiple people are working on the same GitHub project, things get a
little more complex

I went though almost my whole PhD without working on shared GitHub
projects and only now do I feel semi-confident collaborating!

I think it’s best to figure things out in your own projects first

Git on the command line

There are a lot of functions you might hear about (git fetch, git merge, etc.)

RStudio and GitHub will have everything we need!

4

Illustrations from the blog Openscapes GitHub for supporting, contributing, and
5

https://www.openscapes.org/
https://www.openscapes.org/blog/2022/05/27/github-illustrated-series/

@allison_horst 6

https://twitter.com/allison_horst

Workflow
Create a repository (clone from GitHub, or create on your
computer and connect to GitHub)

�. Write some code!

�. When you complete “something”, add it to the staging
area

�. Write a brief description of what you did (“added linear
model”; “created table 1”) and commit

�. Push to GitHub

�. Repeat!

As long as you are working on your own, all on the same
computer, you don’t need to worry about pulling

7

What is a commit?

Illustrations from the blog Openscapes GitHub for supporting, contributing, and
8

https://www.openscapes.org/
https://www.openscapes.org/blog/2022/05/27/github-illustrated-series/

What should you commit? Whatever you
don’t want to lose!

Illustrations from the blog Openscapes GitHub for supporting, contributing, and
9

https://www.openscapes.org/
https://www.openscapes.org/blog/2022/05/27/github-illustrated-series/

 by Allison Horst and Julia Lowndes.failing safely

10

https://www.openscapes.org/blog/2022/05/27/github-illustrated-series/

If you know that your code worked at 10am
on October 21, 2015, and now it doesn’t, you
can return!

11

Exercises
�. Fork the repo (repository) at

�. On your fork of the repository, click the green “Code”
button. We are going to clone the repository to your
computer using HTTPS.

https://github.com/louisahsmith/epi590r-in-class

12

https://github.com/louisahsmith/epi590r-in-class

Forking

Purpose: Used to create a personal
copy of another user’s repository on
your GitHub account.

Ownership: The forked repository is still
on the original owner’s account, and
you get your own copy to work with.

Collaboration: Allows you to make
changes without affecting the original
repository. You can make changes,
commit them to your fork, and then
propose these changes to the original
repository through pull requests.

Relationship: The forked repository
remains connected to the original, but
changes aren’t automatically synced.

Use Case: Commonly used when you
want to contribute to a project that you
don’t have direct write access to.

Cloning

Purpose: Used to make a local copy of
a GitHub repository on your computer.

Ownership: You have a read-write copy
on your local machine, but it’s not
automatically linked to your GitHub
account (you can do so through
RStudio).

Collaboration: Allows you to work on
the project locally and make changes,
but these changes aren’t automatically
visible to others.

Relationship: The cloned repository is a
standalone copy, and changes won’t
automatically affect the original or
other clones.

Use Case: Useful when you want to
work on a project locally and have full
control over commits and pushes.

13

You have a forked repo on GitHub, now
you are cloning that forked repo on your
own computer
�. Open up RStudio.

File > New Project > “Version Control” > “Git”

�. Paste the URL to your fork

Name the project directory (easiest if it has the same
name as the repo)

Choose where you want to store the project (remember
this spot!)

Create Project!
14

@allison_horst 15

https://twitter.com/allison_horst

Practice making a change, staging,
committing, pushing
�. From the filepane in RStudio, open README.md

Change the file and save your changes

�. In your Git pane, click on the checkbox to stage the file

Then click “Commit”

16

15:00
17

File management and
projects in R

or, How to keep your computer safe from fire

1

There’s a famous about workflows in R1 about a
talk gave that included this slide:

blog post
Jenny Bryan

If the first line of your R script is

I will come into your office and SET YOUR COMPUTER
ON FIRE 🔥.

If the first line of your R script is

I will come into your office and SET YOUR COMPUTER
ON FIRE 🔥.

setwd("C:\Users\jenny\path\that\only\I\have")1

rm(list = ls())1

�. yes, R blog posts can be famous
2

https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://jennybryan.org/

Instead: project-oriented workflow
R projects provide a structured and organized way to
work on projects in R

R projects encapsulate all project-related files and
settings into a single directory

RStudio makes it easy to work with R projects

3

R Projects (and related tools) can prevent a
lot of accidents!

4

Artwork by @allison_horst

R Projects

5

https://twitter.com/allison_horst

Benefits of R Projects
�. Isolation: Each project has its own workspace, separate

from other projects

�. Reproducibility: Projects ensure that code and data are
self-contained and portable

�. Collaboration: Projects facilitate collaboration by
sharing the entire project directory

6

Always open a project by opening the
.Rproj file

You can have multiple projects open at once in different
RStudio sessions!

Mac Windows

7

You can also switch between R projects
from RStudio

8

Creating an R Project
�. Open RStudio and go to File > New Project, or click on

the projects button in the upper-right corner of RStudio.

�. Choose a project location (New Directory, Version
Control, Existing Directory).

�. Specify the project directory (where on your computer
you are storing the folder with the project) and create
the project.

�. Choose the project type (e.g., regular project, R package,
Shiny app, Quarto website, Bookdown book)

9

You already have an R project!
In the exercises, we are going to make some more
changes to the repo you forked and cloned

�. Download an .R script and a .csv file from the website

We’ll be using some data from the 1979 National
Longitudinal Survey of Youth

�. Find your epi590r-in-class repo in your file browser

Create an R folder and a data folder

Within the data folder add a raw and a clean folder.

Put the .csv file in the data/raw folder and the script in R
folder.

10

File structure goal
epi590r-in-class/
├─ epi590r-in-class.Rproj
├─ README.md
├─ R/
│ └─ clean-data-bad.R
├─ data/
│ ├─ raw/
│ │ └─ nlsy.csv
│ └─ clean/

11

Exercises, cont.
�. Return to RStudio. If you closed RStudio, make sure you

re-open this project. Look to the filepane to confirm the
files are there.

�. Stage, commit, and push the changes you’ve made.

�. Try to run the code, line-by-line, in clean-data-bad.R.

As you’re running it, try to think of changes you might
make

12

Stop for a settings change!
�. Tell RStudio to start fresh whenever you start a new

session

�. Close RStudio, then open it up again by opening the
epi590r-in-class.Rproj file in your file browser

13

15:00
14

The {here} package
Fire safety, continued

1

The problem with setwd()
setwd() changes the working directory, leading to
potential issues in collaboration and reproducibility

You and I don’t have the same file structure!

For example, my current working directory is

It’s also really annoying to change your working
directory when you move around files and folders, even
if it’s just you using them

getwd()1

[1] "/Users/l.smith/Documents/Teaching/Emory/epi590r-2023"

2

Do you think this code from 2015 still
works?

3

Referring to files with the here package

You can also separate the file paths with /:

source(here::here("R", "functions.R"))1

2

dat <- read_csv(here::here("data", "raw", "data.csv"))3

4

p <- ggplot(dat) + geom_point(aes(x, y))5

6

ggsave(plot = p, 7

 filename = here::here("results", "figures", "fig.pdf"))8

dat <- read_csv(here::here("data/raw/data.csv"))1

4

How it works
Construct file paths with reference to the top directory
holding your .Rproj file.

here::here("data", "raw", "data.csv") for me, here,
becomes
"/Users/l.smith/Documents/Teaching/Emory/epi590r-
2023/data/raw/data.csv"

If I change my working directory to somewhere else
within my project, it will still give me that path

And if I send you my code to run, it will become
whatever file path you need it to be, as long as you’re
running it within the R Project.

5

Referring to the here package

is equivalent to

I just prefer to write out the package name whenever I
need it, but you can load the package for your entire
session if you want.

here::here()1

library(here)1

here()2

6

Exercises
�. Install the {here} package:

install.packages("here")

�. Make sure you’re in your in-class R project! In the
console, run:

here::here() to print your project directory
getwd() to print your working directory

What do you notice?

�. In the console, run:

setwd("data") to set your working directory

Then run the same lines as above. What do you notice?

7

Exercises, cont.
�. Download the next .R script from the website and use

your file browser to put it in the R folder in your project.

Run through the code line-by-line.

Compare it with the code from the last section.

15:00
8

Creating new projects
Starting from scratch

1

EPI 590R final project
Your goal will be to create an analysis that

I can reproduce on my own computer

Is easy to rerun if I tell you, for example, to remove the
12th row of your dataset

We’ll start this in class!

The final project will be due August 29. More info to come! 2

New projects
We cloned our first project from GitHub; now we are
going to start a new project from scratch

�. File > New Project > New Directory > New Project

If you ever want to convert an existing folder that holds
an analysis into an R project, you can choose “Existing
Directory”

You’ll also see other options besides “New Project” – an
R package, a Shiny app, etc.

These will get you set up with some initial files for
these types of projects

You can also make a template of your own!
3

New projects
�. Choose a name for your new project and where to store

it on your computer

Check “Create a git repository”

This gets you all set to connect to GitHub and creates
a .gitignore file

You can leave “Use renv with this project” unchecked
(we’ll be introducing the {renv} package later!)

4

Initial Git commit
�. Stage and commit the files

I usually use “initial commit” as my first commit
message since I haven’t don’t anything yet!

We can’t yet push because we haven’t connected to a
remote repository

5

@allison_horst 6

https://twitter.com/allison_horst

Creating a new repo on GitHub
�. Open up your web browser to GitHub and make a new

repository

From github.com From github.com/username

7

Repository options
�. Choose a name (preferably one that matches the name

you gave your R project).

You can choose to make it private, if you wish

Private repos have some fewer features unless you
have GitHub Pro (which you can get for free as a
student with the !)

You don’t need to click anything else

GitHub student developer pack

8

https://education.github.com/pack

Connect the local to the remote
You created your local repo with RStudio in a directory
you chose

Now you need to connect it to the remote repo on
GitHub

�. Copy the code from the second section: “push an
existing repository from the command line” in the
terminal within RStudio.

9

Connect the local to the remote
�. Run the three lines of code one at a time, then refresh

your GitHub page!

10

.gitignore
You likely don’t want to push everything to GitHub, even if
you have a private repository

Be especially careful about data and passwords

You also can’t push very large files (>100 mb)

A .gitignore is a special text file that tells Git not to track
certain files

RStudio starts you off with a few entries, including
.Rhistory since no one needs to see everything you’ve
run in R!

11

.gitignore exercises
�. Create a new file called secrets.txt within this new

repo

Write down your deepest, darkest secrets and save

�. Open .gitignore via the RStudio filepane

Add “secrets.txt” below the files that RStudio helpfully
ignored for you

Save

Keep your eye on the Git pane!

12

Starting the final project
��. Set up your folders how you’d like in your repo (you can

always change this)

Find some data, download it, and store it in your repo

Commit and push to GitHub!

For your final project, your data must be something that
can be stored online and accessed by me.

Some fun options for data are:

(descriptions:
)

https://data.fivethirtyeight.com/

https://github.com/rfordatascience/tidytuesday#datasets

https://github.com/higgi13425/medicaldata/tree/master/data
https://higgi13425.github.io/medicaldata/#list-

of-datasets

13

https://data.fivethirtyeight.com/
https://github.com/rfordatascience/tidytuesday#datasets
https://github.com/higgi13425/medicaldata/tree/master/data
https://higgi13425.github.io/medicaldata/#list-of-datasets

Exercises
Get started making a new project and GitHub repo for
your final project and finding some fun data

You can always change anything you want later, and even
delete the whole thing and start fresh!

15:00
14

Descriptive tables with
{gtsummary}

Make an easy Table 1

1

What is {gtsummary}?
Create tables that are publication-ready

Highly customizable

Descriptive tables, regression tables, etc.

2

gtsummary::tbl_summary()
Characteristic Male, N = 6,403

1
Female, N = 6,283

1

race_eth_cat

 Hispanic 1,000 (16%) 1,002 (16%)

 Black 1,613 (25%) 1,561 (25%)

 Non-Black, Non-Hispanic 3,790 (59%) 3,720 (59%)

region_cat

 Northeast 1,296 (21%) 1,254 (20%)

 North Central 1,488 (24%) 1,446 (23%)

 South 2,251 (36%) 2,317 (38%)

 West 1,253 (20%) 1,142 (19%)

 Unknown 115 124

eyesight_cat

 Excellent 1,582 (38%) 1,334 (31%)

 Very good 1,470 (35%) 1,500 (35%)

 Good 792 (19%) 1,002 (23%)

 Fair 267 (6.4%) 365 (8.5%)

 Poor 47 (1.1%) 85 (2.0%)
1
 n (%); Median (IQR)

library(gtsummary)1

2

tbl_summary(3

 nlsy,4

 by = sex_cat,5

 include = c(sex_cat, race_et6

 eyesight_cat, gl7

Characteristic Male, N = 6,403
1

Female, N = 6,283
1

 Unknown 2,245 1,997

glasses 1,566 (38%) 2,328 (54%)

 Unknown 2,241 1,995

age_bir 25 (21, 29) 22 (19, 27)

 Unknown 3,652 3,091

1
 n (%); Median (IQR)

3

You can also refer to variables using helper
functions

Characteristic Male, N = 6,403
1

Female, N = 6,283
1

region_cat

 Northeast 1,296 (21%) 1,254 (20%)

 North Central 1,488 (24%) 1,446 (23%)

 South 2,251 (36%) 2,317 (38%)

 West 1,253 (20%) 1,142 (19%)

 Unknown 115 124

race_eth_cat

 Hispanic 1,000 (16%) 1,002 (16%)

 Black 1,613 (25%) 1,561 (25%)

 Non-Black, Non-Hispanic 3,790 (59%) 3,720 (59%)

eyesight_cat

 Excellent 1,582 (38%) 1,334 (31%)

 Very good 1,470 (35%) 1,500 (35%)

 Good 792 (19%) 1,002 (23%)

1
 n (%); Median (IQR)

library(gtsummary)1

2

tbl_summary(3

 nlsy,4

 by = sex_cat,5

 include = c(ends_with("cat")6

Characteristic Male, N = 6,403
1

Female, N = 6,283
1

 Fair 267 (6.4%) 365 (8.5%)

 Poor 47 (1.1%) 85 (2.0%)

 Unknown 2,245 1,997

glasses 1,566 (38%) 2,328 (54%)

 Unknown 2,241 1,995

age_bir 25 (21, 29) 22 (19, 27)

 Unknown 3,652 3,091

1
 n (%); Median (IQR)

4

We probably want to name the variables
Characteristic Male, N = 6,403

1
Female, N = 6,283

1

Race/ethnicity

 Hispanic 1,000 (16%) 1,002 (16%)

 Black 1,613 (25%) 1,561 (25%)

 Non-Black, Non-Hispanic 3,790 (59%) 3,720 (59%)

Region

 Northeast 1,296 (21%) 1,254 (20%)

 North Central 1,488 (24%) 1,446 (23%)

 South 2,251 (36%) 2,317 (38%)

 West 1,253 (20%) 1,142 (19%)

 Missing 115 124

Eyesight

 Excellent 1,582 (38%) 1,334 (31%)

 Very good 1,470 (35%) 1,500 (35%)

 Good 792 (19%) 1,002 (23%)

 Fair 267 (6.4%) 365 (8.5%)

 Poor 47 (1.1%) 85 (2.0%)
1
 n (%); Median (IQR)

tbl_summary(1

 nlsy,2

 by = sex_cat,3

 include = c(sex_cat, race_eth_cat, region_c4

 eyesight_cat, glasses, age_bir)5

 label = list(6

 race_eth_cat ~ "Race/ethnicity",7

 region_cat ~ "Region",8

 eyesight_cat ~ "Eyesight",9

 glasses ~ "Wears glasses",10

 age_bir ~ "Age at first birth"11

),12

 missing_text = "Missing")13

Characteristic Male, N = 6,403
1

Female, N = 6,283
1

 Missing 2,245 1,997

Wears glasses 1,566 (38%) 2,328 (54%)

 Missing 2,241 1,995

Age at first birth 25 (21, 29) 22 (19, 27)

 Missing 3,652 3,091

1
 n (%); Median (IQR)

5

And do a million other things
Variable Total

Male, N =
6,403

Female, N =
6,283 P

Race/ethnicity 0.8

 Hispanic 2,002
(16%)

1,000
(16%) 1,002 (16%)

 Black 3,174
(25%)

1,613
(25%) 1,561 (25%)

 Non-Black, Non-
Hispanic

7,510
(59%)

3,790
(59%) 3,720 (59%)

Eyesight <0.001

 Excellent 2,916
(35%)

1,582
(38%) 1,334 (31%)

 Very good 2,970
(35%)

1,470
(35%) 1,500 (35%)

 Good 1,794
(21%) 792 (19%) 1,002 (23%)

 Fair 632
(7.5%) 267 (6.4%) 365 (8.5%)

 Poor 132
(1.6%) 47 (1.1%) 85 (2.0%)

 Missing 4,242 2,245 1,997

Wears glasses 3,894
(46%)

1,566
(38%) 2,328 (54%) <0.001

tbl_summary(1

 nlsy,2

 by = sex_cat,3

 include = c(sex_cat, race_eth_cat,4

 eyesight_cat, glasses, age_bir)5

 label = list(6

 race_eth_cat ~ "Race/ethnicity",7

 eyesight_cat ~ "Eyesight",8

 glasses ~ "Wears glasses",9

 age_bir ~ "Age at first birth"10

),11

 missing_text = "Missing") |> 12

 add_p(test = list(all_continuous() ~ "t.tes13

 all_categorical() ~ "chis14

 add_overall(col_label = "**Total**") |> 15

 bold_labels() |> 16

 modify_footnote(update = everything() ~ NA)17

 modify_header(label = "**Variable**", p.val18

Variable Total
Male, N =
6,403

Female, N =
6,283 P

 Missing 4,236 2,241 1,995

Age at first birth 23 (20,
28) 25 (21, 29) 22 (19, 27) <0.001

 Missing 6,743 3,652 3,091

6

Additional arguments
We saw include =, by =, label =, missing_text = in the
example

statistic =:

The default is list(all_continuous() ~ "{median}
({p25}, {p75})", all_categorical() ~ "{n} ({p}%)")

For categorical variables, you can use {n} (frequency),
{N} (denominator), {p} formatted percentage

For continuous variables, you can use {median}, {mean},
{sd}, {var}, {min}, {max}, {sum}, {p##} (any percentile), or
any function {foo}

You can refer to individual variables with their names:
list(age ~ "min = {min}; max = {max}") 7

Additional arguments
digits =:

It will do its best to guess the appropriate number of
digits

Otherwise, you can pass a function:

digits = everything() ~ style_sigfig

Or a value for each statistic shown

statistic = list(age ~ "min = {min}; max =
{max}", year_of_birth = "{median}
({p25}, {p75})") :

digits = list(age ~ c(1, 1)
year_of_birth ~ c(0, 0, 0))

8

Additional arguments
type =:

One of “continuous”, “continuous2”, “categorical”,
“dichotomous”

If a variable only has 0/1, TRUE/FALSE, or yes/no values,
it will be treated as dichotomous

You can override this with type =
list(``varname``~ "categorical")

Dichotomous variables only show one row (i.e., the
percentage of 1’s) unless you change to categorical

You can change which level to show with value =
list(varname ~ "level to show")

“continuous2” variables can have multiple rows of
statistics

missing =:
9

Show NA values in the table (“no”, “ifany”, “always”)
Additional functions
add_overall(): In a stratified table, add a column for all
strata combined

bold_labels(): Bold the variable names (also
bold_levels())

add_p(): Add a p-value (required by some journals �)

modify_footnote(update = everything() ~ NA): Remove
the footnotes (can also add footnotes!)

modify_header(): Change the header column

10

tbl_summary()

Incredibly customizeable

So many options can be overwhelming

The is an incredible resource

To save, I often just view in the web browser and copy
and paste into a Word document

Can also be used within quarto/R Markdown

FAQ/gallery

11

https://www.danieldsjoberg.com/gtsummary/articles/gallery.html

Exercises
�. Download the script with some examples and save in

your in-class project directory.

�. Install {gtsummary} and run the examples.

3-7. You’re on your own! Work with your neighbors, and
we’ll come back together to go over these.

Extra time? Start a table using the data you downloaded
for your final project! Make sure you switch to that R
project!

15:00
12

Regression tables with
{gtsummary}

On to Table 2!

1

Univariate regressions
Fit a series of univariate regressions of income on other
variables.

Characteristic N Beta 95% CI
1

p-
value

age_bir 4,773 595 538, 652 <0.001

sex_cat 10,195

 Male — —

 Female -358 -844, 128 0.15

race_eth_cat 10,195

 Hispanic — —

 Black -1,747 -2,507, -988 <0.001

 Non-Black, Non-
Hispanic 3,863 3,195, 4,530 <0.001

eyesight_cat 6,789

 Excellent — —

 Very good -578 -1,319, 162 0.13

 Good -1,863 -2,719, -1,006 <0.001
1
 CI = Confidence Interval

tbl_uvregression(1

 nlsy, 2

 y = income,3

 include = c(sex_cat, race_et4

 eyesight_cat, in5

 method = lm)6

Characteristic N Beta 95% CI
1

p-
value

 Fair -4,674 -5,910,
-3,439 <0.001

 Poor -6,647 -9,154, -4,140 <0.001

1
 CI = Confidence Interval

2

Can also do logistic regression
Characteristic N OR

1
95% CI

1
p-value

age_bir 5,813 1.02 1.01, 1.03 <0.001

sex_cat 8,450

 Male — —

 Female 1.97 1.81, 2.15 <0.001

race_eth_cat 8,450

 Hispanic — —

 Black 0.76 0.67, 0.86 <0.001

 Non-Black, Non-Hispanic 1.34 1.19, 1.50 <0.001

eyesight_cat 8,444

 Excellent — —

 Very good 0.93 0.84, 1.03 0.2

 Good 0.95 0.84, 1.07 0.4

 Fair 0.81 0.68, 0.96 0.016

 Poor 1.15 0.81, 1.63 0.4

1
 OR = Odds Ratio, CI = Confidence Interval

tbl_uvregression(1

 nlsy, 2

 y = glasses,3

 include = c(sex_cat, race_et4

 eyesight_cat, gl5

 method = glm,6

 method.args = list(family = 7

 exponentiate = TRUE)8

3

We probably want to do some
multivariable regressions

linear_model <- lm(income ~ sex_cat + age_bir + race_eth_cat, 1

 data = nlsy)2

linear_model_int <- lm(income ~ sex_cat*age_bir + race_eth_cat, 1

 data = nlsy)2

logistic_model <- glm(glasses ~ eyesight_cat + sex_cat + income, 1

 data = nlsy, family = binomial())2

4

gtsummary::tbl_regression()
Characteristic Beta 95% CI

1
p-value

(Intercept) 2,147 493, 3,802 0.011

Sex

 Male — —

 Female 25 -654, 705 >0.9

Age at first birth 438 381, 495 <0.001

Race/ethnicity

 Hispanic — —

 Black -772 -1,714, 171 0.11

 Non-Black, Non-Hispanic 7,559 6,676, 8,442 <0.001

1
 CI = Confidence Interval

tbl_regression(1

 linear_model, 2

 intercept = TRUE,3

 label = list(4

 sex_cat ~ "Sex",5

 race_eth_cat ~ "Race/ethnicity",6

 age_bir ~ "Age at first birth"7

))8

5

gtsummary::tbl_regression()
Characteristic OR

1
95% CI

1
p-value

Eyesight

 Excellent — —

 Very good 0.92 0.82, 1.03 0.2

 Good 0.92 0.80, 1.05 0.2

 Fair 0.80 0.66, 0.98 0.028

 Poor 1.03 0.69, 1.53 0.9

Sex

 Male — —

 Female 2.04 1.85, 2.25 <0.001

Income 1.00 1.00, 1.00 <0.001

1
 OR = Odds Ratio, CI = Confidence Interval

tbl_regression(1

 logistic_model, 2

 exponentiate = TRUE,3

 label = list(4

 sex_cat ~ "Sex",5

 eyesight_cat ~ "Eyesight",6

 income ~ "Income"7

))8

6

Arguments
Argument Description

label= modify variable labels in table

exponentiate= exponentiate model coefficients

include= names of variables to include in output. Default is all variables

show_single_row= By default, categorical variables are printed on multiple rows. If a variable is dichotomous and you wish to print the
regression coefficient on a single row, include the variable name(s) here.

conf.level= confidence level of confidence interval

intercept= indicates whether to include the intercept

estimate_fun= function to round and format coefficient estimates

pvalue_fun= function to round and format p-values

tidy_fun= function to specify/customize tidier function

From https://www.danieldsjoberg.com/gtsummary/articles/tbl_regression.html 7

https://www.danieldsjoberg.com/gtsummary/articles/tbl_regression.html

You could put several together
tbl_no_int <- tbl_regression(1

 linear_model, 2

 intercept = TRUE,3

 label = list(4

 sex_cat ~ "Sex",5

 race_eth_cat ~ "Race/ethnicity",6

 age_bir ~ "Age at first birth"7

))8

9

tbl_int <- tbl_regression(10

 linear_model_int, 11

 intercept = TRUE,12

 label = list(13

sex cat ~ "Sex"14

8

You could put several together

Characteristic

Model 1 Model 2

Beta 95% CI
1
p-value Beta 95% CI

1
p-value

(Intercept) 2,147 493, 3,802 0.011 4,064 1,884, 6,245 <0.001

Sex

 Male — — — —

 Female 25 -654, 705 >0.9 -3,635 -6,432, -838 0.011

Age at first birth 438 381, 495 <0.001 364 285, 443 <0.001

Race/ethnicity

 Hispanic — — — —

 Black -772 -1,714, 171 0.11 -759 -1,701, 183 0.11

 Non-Black, Non-Hispanic 7,559 6,676, 8,442 <0.001 7,550 6,668, 8,433 <0.001

Sex/age interaction

 Female * Age at first birth 149 39, 260 0.008

1
 CI = Confidence Interval

tbl_merge(list(tbl_no_int, tbl_int), 1

 tab_spanner = c("**Model 1**", "**Model 2**"))2

9

Exercises
�. Download the script with some examples and save in

your in-class project directory.

�. Run the examples.

3-6. You’re on your own again!

Extra time? Start a table using the data you downloaded
for your final project! Make sure you switch to that R
project!

15:00
10

Finer control over statistics

1

We fit a series of univariate regressions
Characteristic N Beta 95% CI

1
p-
value

age_bir 4,773 595 538, 652 <0.001

sex_cat 10,195

 Male — —

 Female -358 -844, 128 0.15

race_eth_cat 10,195

 Hispanic — —

 Black -1,747 -2,507, -988 <0.001

 Non-Black, Non-
Hispanic 3,863 3,195, 4,530 <0.001

eyesight_cat 6,789

 Excellent — —

 Very good -578 -1,319, 162 0.13

 Good -1,863 -2,719, -1,006 <0.001

 Fair -4,674 -5,910,
-3,439 <0.001

 Poor -6,647 -9,154, -4,140 <0.001

1
 CI = Confidence Interval

income_table <- tbl_uvregressi1

 nlsy,2

 y = income,3

 include = c(4

 sex_cat, race_eth_cat,5

 eyesight_cat, income, age_6

),7

 method = lm8

)9

income_table10

2

But a table is a limited form of output
We might want to dig in a little more to those regressions

One helpful option from {gtsummary} is to extract data
from the table directly

This can be reported in a manuscript (rather than
copying and pasting from the table)

We’ll look at this again later!

inline_text(income_table, variable = "age_bir")1

[1] "595 (95% CI 538, 652; p<0.001)"

3

What if we want all the numbers, say to
create a figure?

Under the hood, {gtsummary} is using the {broom}
package to extract the statistics from the various
models

We can also use that package directly!

4

Statistical models in R can be messy

We could look at the model summary:

mod_sex_cat <- lm(income ~ sex_cat, data = nlsy)1

summary(mod_sex_cat)1

Call:
lm(formula = income ~ sex_cat, data = nlsy)

Residuals:
 Min 1Q Median 3Q Max
-14880 -8880 -3943 5477 60478

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 14880.3 172.6 86.237 <2e-16 ***
sex_catFemale -357.8 247.8 -1.444 0.149

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12510 on 10193 degrees of freedom
 (2491 observations deleted due to missingness)

5

Statistical models in R can be messy
If we want to do something with the various values, we
could extract each statistic individually:

coef(mod_sex_cat)1

 (Intercept) sex_catFemale
 14880.3152 -357.8029

confint(mod_sex_cat)1

 2.5 % 97.5 %
(Intercept) 14542.079 15218.5512
sex_catFemale -843.608 128.0022

summary(mod_sex_cat)$r.squared1

[1] 0.0002044429

summary(mod_sex_cat)$coefficients1

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 14880.3152 172.5521 86.236672 0.0000000
sex_catFemale -357.8029 247.8349 -1.443715 0.1488499 6

{broom} has three main functions:
augment(), glance(), tidy()
augment() adds fitted values, residuals, and other statistics
to the original data

library(broom)1

augment(mod_sex_cat)2

A tibble: 10,195 × 9
 .rownames income sex_cat .fitted .resid .hat .sigma .cooksd .std.resid
 <chr> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 30000 Female 14523. 15477. 0.000202 12506. 1.55e-4 1.24
2 2 20000 Female 14523. 5477. 0.000202 12507. 1.94e-5 0.438
3 3 22390 Female 14523. 7867. 0.000202 12507. 4.01e-5 0.629
4 4 22390 Female 14523. 7867. 0.000202 12507. 4.01e-5 0.629
5 5 36000 Male 14880. 21120. 0.000190 12505. 2.72e-4 1.69
6 6 35000 Male 14880. 20120. 0.000190 12505. 2.46e-4 1.61
7 7 8502 Male 14880. -6378. 0.000190 12507. 2.48e-5 -0.510
8 8 7227 Female 14523. -7296. 0.000202 12507. 3.44e-5 -0.583
9 9 17000 Male 14880. 2120. 0.000190 12507. 2.74e-6 0.170

10 10 3548 Female 14523. -10975. 0.000202 12506. 7.79e-5 -0.878
ℹ 10,185 more rows

7

{broom} has three main functions:
augment(), glance(), tidy()
glance() creates a table of statistics that pertain to the
entire model

glance(mod_sex_cat)1

A tibble: 1 × 12
 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.000204 0.000106 12506. 2.08 0.149 1 -110644. 221295. 2.21e5
ℹ 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

8

{broom} has three main functions:
augment(), glance(), tidy()
tidy() is the most useful to me and probably you!

It extracts coefficients and confidence intervals from
models

tidy(mod_sex_cat, conf.int = TRUE)1

A tibble: 2 × 7
 term estimate std.error statistic p.value conf.low conf.high
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 14880. 173. 86.2 0 14542. 15219.
2 sex_catFemale -358. 248. -1.44 0.149 -844. 128.

9

tidy() works on over 100 statistical
methods in R!
Anova, ARIMA, Cox, factor analysis, fixed effects, GAM, GEE,
IV, kappa, kmeans, multinomial, proportional odds,
principal components, survey methods, …

See the full list

All the output shares column names

This makes it really easy to work with the output and
reuse code across analyses

here

10

https://broom.tidymodels.org/articles/available-methods.html

Some models have additional arguments
For example, we might want exponentiated coefficients:

logistic_model <- glm(glasses ~ eyesight_cat + sex_cat + income,1

 data = nlsy, family = binomial())2

tidy(logistic_model, conf.int = TRUE, exponentiate = TRUE)3

A tibble: 7 × 7
 term estimate std.error statistic p.value conf.low conf.high
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.499 5.96e-2 -11.7 1.74e-31 0.444 0.560
2 eyesight_catVery good 0.920 5.96e-2 -1.39 1.64e- 1 0.819 1.03
3 eyesight_catGood 0.916 6.91e-2 -1.27 2.04e- 1 0.800 1.05
4 eyesight_catFair 0.802 1.00e-1 -2.20 2.77e- 2 0.658 0.976
5 eyesight_catPoor 1.03 2.01e-1 0.147 8.83e- 1 0.694 1.53
6 sex_catFemale 2.04 5.00e-2 14.2 5.46e-46 1.85 2.25
7 income 1.00 1.93e-6 7.49 6.95e-14 1.00 1.00

11

We can also combine the results of lots of
regressions

we already made mod_sex_cat1

mod_race_eth_cat <- lm(income ~ race_eth_cat, data = nlsy)2

mod_eyesight_cat <- lm(income ~ eyesight_cat, data = nlsy)3

mod_age_bir <- lm(income ~ age_bir, data = nlsy)4

5

tidy_sex_cat <- tidy(mod_sex_cat, conf.int = TRUE)6

tidy_race_eth_cat <- tidy(mod_race_eth_cat, conf.int = TRUE)7

tidy_eyesight_cat <- tidy(mod_eyesight_cat, conf.int = TRUE)8

tidy_age_bir <- tidy(mod_age_bir, conf.int = TRUE)9

There are of course more efficient ways to do this instead of copy/pasting 4 times…
12

With a little finagling, we have the same
data as in the original univartiate
regression table…

dplyr::bind_rows(1

 sex_cat = tidy_sex_cat,2

 race_eth_cat = tidy_race_eth_cat,3

 eyesight_cat = tidy_eyesight_cat,4

 age_bir = tidy_age_bir, .id = "model") |>5

 dplyr::mutate(6

 term = stringr::str_remove(term, model),7

 term = ifelse(term == "", model, term))8

13

With a little finagling, we have the same
data as in the original univartiate
regression table…
A tibble: 12 × 8
 model term estimate std.error statistic p.value conf.low conf.high
 <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 sex_cat (Inter… 14880. 173. 86.2 0 14542. 15219.
2 sex_cat Female -358. 248. -1.44 1.49e- 1 -844. 128.
3 race_eth_cat (Inter… 12867. 302. 42.7 0 12276. 13459.
4 race_eth_cat Black -1747. 387. -4.51 6.58e- 6 -2507. -988.
5 race_eth_cat Non-Bl… 3863. 341. 11.3 1.20e-29 3195. 4530.
6 eyesight_cat (Inter… 17683. 270. 65.6 0 17155. 18212.
7 eyesight_cat Very g… -578. 378. -1.53 1.26e- 1 -1319. 162.
8 eyesight_cat Good -1863. 437. -4.26 2.05e- 5 -2719. -1006.
9 eyesight_cat Fair -4674. 630. -7.42 1.35e-13 -5910. -3439.

10 eyesight_cat Poor -6647. 1279. -5.20 2.07e- 7 -9154. -4140.
11 age_bir (Inter… 1707. 733. 2.33 1.99e- 2 270. 3143.
12 age_bir age_bir 595. 29.1 20.4 3.71e-89 538. 652.

14

Even easier cleanup!
We could instead clean up the names and add reference
rows with the {tidycat} package:

tidy(logistic_model, conf.int = TRUE, exponentiate = TRUE) |> 1

 tidycat::tidy_categorical(logistic_model, exponentiate = TRUE) |2

 dplyr::select(-c(3:5))3

A tibble: 9 × 8
 term estimate conf.low conf.high variable level effect reference
 <chr> <dbl> <dbl> <dbl> <chr> <fct> <chr> <chr>
1 (Intercept) 0.499 0.444 0.560 (Interc… (Int… main Non-Base…
2 <NA> 1 1 1 eyesigh… Exce… main Baseline…
3 eyesight_catVery … 0.920 0.819 1.03 eyesigh… Very… main Non-Base…
4 eyesight_catGood 0.916 0.800 1.05 eyesigh… Good main Non-Base…
5 eyesight_catFair 0.802 0.658 0.976 eyesigh… Fair main Non-Base…
6 eyesight_catPoor 1.03 0.694 1.53 eyesigh… Poor main Non-Base…
7 <NA> 1 1 1 sex_cat Male main Baseline…
8 sex_catFemale 2.04 1.85 2.25 sex_cat Fema… main Non-Base…
9 income 1.00 1.00 1.00 income inco… main Non-Base…

15

This makes it easy to make forest plots, for
example

library(ggplot2)1

tidy(logistic_model, conf.int = TRUE, exponentiate = TRUE) |> 2

 tidycat::tidy_categorical(logistic_model, exponentiate = TRUE) |3

 dplyr::slice(-1) |> # remove intercept4

 ggplot(mapping = aes(x = level, y = estimate, 5

 ymin = conf.low, ymax = conf.high)) +6

 geom_point() +7

 geom_errorbar() +8

 facet_grid(cols = vars(variable), scales = "free", space = "free9

 scale_y_log10()10

16

This makes it easy to make forest plots, for
example

17

Exercises
�. Download a new script with these examples.

�. Run it.

�. Teach yourself to use broom::tidy() to extract the
results of the Poisson regression with robust standard
errors and combine them with the results of the log-
binomial regression.

�. Start creating some tables for your final project!

15:00
18

