{gtsummary}
On to Table 2!
Fit a series of univariate regressions of income on other variables.
Characteristic | N | Beta | 95% CI1 | p-value |
---|---|---|---|---|
age_bir | 4,773 | 595 | 538, 652 | <0.001 |
sex_cat | 10,195 | |||
Male | — | — | ||
Female | -358 | -844, 128 | 0.15 | |
race_eth_cat | 10,195 | |||
Hispanic | — | — | ||
Black | -1,747 | -2,507, -988 | <0.001 | |
Non-Black, Non-Hispanic | 3,863 | 3,195, 4,530 | <0.001 | |
eyesight_cat | 6,789 | |||
Excellent | — | — | ||
Very good | -578 | -1,319, 162 | 0.13 | |
Good | -1,863 | -2,719, -1,006 | <0.001 | |
Fair | -4,674 | -5,910, -3,439 | <0.001 | |
Poor | -6,647 | -9,154, -4,140 | <0.001 | |
1 CI = Confidence Interval |
Characteristic | N | OR1 | 95% CI1 | p-value |
---|---|---|---|---|
age_bir | 5,813 | 1.02 | 1.01, 1.03 | <0.001 |
sex_cat | 8,450 | |||
Male | — | — | ||
Female | 1.97 | 1.81, 2.15 | <0.001 | |
race_eth_cat | 8,450 | |||
Hispanic | — | — | ||
Black | 0.76 | 0.67, 0.86 | <0.001 | |
Non-Black, Non-Hispanic | 1.34 | 1.19, 1.50 | <0.001 | |
eyesight_cat | 8,444 | |||
Excellent | — | — | ||
Very good | 0.93 | 0.84, 1.03 | 0.2 | |
Good | 0.95 | 0.84, 1.07 | 0.4 | |
Fair | 0.81 | 0.68, 0.96 | 0.016 | |
Poor | 1.15 | 0.81, 1.63 | 0.4 | |
1 OR = Odds Ratio, CI = Confidence Interval |
gtsummary::tbl_regression()
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
(Intercept) | 2,147 | 493, 3,802 | 0.011 |
Sex | |||
Male | — | — | |
Female | 25 | -654, 705 | >0.9 |
Age at first birth | 438 | 381, 495 | <0.001 |
Race/ethnicity | |||
Hispanic | — | — | |
Black | -772 | -1,714, 171 | 0.11 |
Non-Black, Non-Hispanic | 7,559 | 6,676, 8,442 | <0.001 |
1 CI = Confidence Interval |
gtsummary::tbl_regression()
Characteristic | OR1 | 95% CI1 | p-value |
---|---|---|---|
Eyesight | |||
Excellent | — | — | |
Very good | 0.92 | 0.82, 1.03 | 0.2 |
Good | 0.92 | 0.80, 1.05 | 0.2 |
Fair | 0.80 | 0.66, 0.98 | 0.028 |
Poor | 1.03 | 0.69, 1.53 | 0.9 |
Sex | |||
Male | — | — | |
Female | 2.04 | 1.85, 2.25 | <0.001 |
Income | 1.00 | 1.00, 1.00 | <0.001 |
1 OR = Odds Ratio, CI = Confidence Interval |
Argument | Description |
---|---|
|
modify variable labels in table |
|
exponentiate model coefficients |
|
names of variables to include in output. Default is all variables |
|
By default, categorical variables are printed on multiple rows. If a variable is dichotomous and you wish to print the regression coefficient on a single row, include the variable name(s) here. |
|
confidence level of confidence interval |
|
indicates whether to include the intercept |
|
function to round and format coefficient estimates |
|
function to round and format p-values |
|
function to specify/customize tidier function |
tbl_no_int <- tbl_regression(
linear_model,
intercept = TRUE,
label = list(
sex_cat ~ "Sex",
race_eth_cat ~ "Race/ethnicity",
age_bir ~ "Age at first birth"
))
tbl_int <- tbl_regression(
linear_model_int,
intercept = TRUE,
label = list(
sex_cat ~ "Sex",
race_eth_cat ~ "Race/ethnicity",
age_bir ~ "Age at first birth",
`sex_cat:age_bir` ~ "Sex/age interaction"
))
Characteristic | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
Beta | 95% CI1 | p-value | Beta | 95% CI1 | p-value | |
(Intercept) | 2,147 | 493, 3,802 | 0.011 | 4,064 | 1,884, 6,245 | <0.001 |
Sex | ||||||
Male | — | — | — | — | ||
Female | 25 | -654, 705 | >0.9 | -3,635 | -6,432, -838 | 0.011 |
Age at first birth | 438 | 381, 495 | <0.001 | 364 | 285, 443 | <0.001 |
Race/ethnicity | ||||||
Hispanic | — | — | — | — | ||
Black | -772 | -1,714, 171 | 0.11 | -759 | -1,701, 183 | 0.11 |
Non-Black, Non-Hispanic | 7,559 | 6,676, 8,442 | <0.001 | 7,550 | 6,668, 8,433 | <0.001 |
Sex/age interaction | ||||||
Female * Age at first birth | 149 | 39, 260 | 0.008 | |||
1 CI = Confidence Interval |
Download the script with some examples and save in your in-class project directory.
Run the examples.
3-6. You’re on your own again!
Extra time? Start a table using the data you downloaded for your final project! Make sure you switch to that R project!
15:00